Lifestyle Magazine

Discovering the Unknown - Antimatter

By Shivam Ralli @shivamralli167
Antimatter. Well it sounds like something sinister doesn't it? The first thing that comes to our mind when we hear it is a spooky blue-green liquid that might be seen in cartoons. 
All that is just a myth. So a few questions might arise, what is antimatter? Are you kidding me? Whoa are we in star wars?
Well this is not a tricky question. Antimatter is the literal meaning of  the word "anti-matter"-the opposite of normal matter. 
Until the recently, the presence of antimatter was only considered theoretical. It was introduced in 1928 when a British physicist Paul A.M. Dirac revised Einstein's famous equation E=mc². Dirac said that Einstein didn't consider that the "m" in the equation - mass - could have negative properties as well as positive. Dirac's equation (E = + or - mc²) allowed for the existence of anti-particles in our universe. Scientists have since proven that several anti-particles exist.
In particle physicsantimatter is material composed of antiparticles, which have the same mass as particles of ordinary matter but have opposite charge

Discovering the Unknown - Antimatter

Anti Matter

When antimatter comes into contact with normal matter, these equal but opposite particles collide to produce an explosion emitting pure radiation, which travels out of the point of the explosion at the speed of light. Both particles that created the explosion are completely annihilated, leaving behind other subatomic particles. The explosion that occurs when antimatter and matter interact transfers the entire mass of both objects into energy. Scientists believe that this energy is more powerful than any that can be generated by other propulsion methods
These anti-particles are, literally, mirror images of normal matter. Each anti-particle has the same mass as its corresponding particle, but the electrical charges are reversed. Here are some antimatter discoveries of the twentieth century:
  • Positrons - Electrons with a positive instead of negative charge. Discovered by Carl Anderson in 1932, positrons were the first evidence that antimatter existed.
  • Anti-protons - Protons that have a negative instead of the usual positive charge. In 1955, researchers at the Berkeley Bevatron produced an antiproton.
Anti-atoms - Pairing together positrons and antiprotons, scientists at CERN, the European Organization for Nuclear Research, created the first anti-atom. Nine anti-hydrogen atoms were created, each lasting only 40 nanoseconds. As of 1998, CERN researchers were pushing the production of anti-hydrogen atoms to 2,000 per hour.Now one more question will arise in your mind if the reaction between matter and antimatter releases so much energy, then why haven't we built a matter and antimatter reaction engine? The problem with developing antimatter propulsion is that there is a lack of antimatter existing in the universe. If there were equal amounts of matter and antimatter, we would likely see these reactions around us. Since antimatter doesn't exist around us, we don't see the light that would result from it colliding with matter.It is possible that particles outnumbered anti-particles at the time of the Big Bang. As stated above, the collision of particles and anti-particles destroys both. And because there may have been more particles in the universe to start with, those are all that's left. There may be no naturally-existing anti-particles in our universe today. However, scientists discovered a possible deposit of antimatter near the center of the galaxy in 1977. If that does exist, it would mean that antimatter exists naturally, and the need to make our own antimatter would be eliminated.For now, we will have to create our own antimatter. Luckily, there is technology available to create antimatter through the use of high-energy particle colliders, also called "atom smashers." An example of atom smasher is the Large Hadron Collider or LHC. Atom smashers, like CERN, are large tunnels lined with powerful supermagnets that circle around to propel atoms at near-light speeds. When an atom is sent through this accelerator, it slams into a target, creating particles. Some of these particles are antiparticles that are separated out by the magnetic field. These high-energy particle accelerators only produce one or two pico grams of antiprotons each year. A pico gram is a trillionth of a gram. All of the antiprotons produced at CERN in one year would be enough to light a 100-watt electric light bulb for three seconds. It will take tons of antiprotons to travel to interstellar destinations.Well lets hope that sometime soon in the future we will be able to create energy using these particles until then watch out, probably you are the innovator whom the world needs.
Discovering the Unknown - Antimatter
Discovering the Unknown - Antimatter
Discovering the Unknown - Antimatter
Discovering the Unknown - Antimatter
Discovering the Unknown - Antimatter
Discovering the Unknown - Antimatter

Back to Featured Articles on Logo Paperblog