To do this, I will apply the 4 questions we proposed in Wilson & Golonka (2013) to the question of the endothelial cell behavior. These are
- What is the task to be solved?
- What are the resources the organism has access to that might solve the task?
- How might these resources get assembled so as to solve the task?
- Do organisms actually do what you describe in Q3?
Q1: What is the task to be solved?
The ecological approach is a task-specific approach; we aren't looking for general purpose algorithms but smart solutions (cf Runeson, 1977). These take advantage of stable local conditions, and are generally more robust and adaptive than general purpose solutions. This means we need to appropriately characterise the task space, i.e. what is happening and what needs to happen.Endothelial cells are responsible for growing new blood vessels so that all the surrounding tissue has access to all the resources (especially oxygen) that it needs. The relevant (relatively) distant dynamics to be perceived are cells in hypoxic (insufficient oxygen) states. The endothelial cells must detect that hypoxia, and respond by migrating to the hypoxic tissue and proliferating into new blood vessels. Migration entails cells adopting one of two roles; a tip cell, that guides the migration, and stalk cells that maintain the connection between existing blood vessels and the new tissue that will be formed when they reach the hypoxic tissue. This is the task of angiogenesis; grow new blood vessels in the right place in response to a need for those new vessels.
Q2: What are the resources available to the organism in the task space?
Cognitive science and cell biology both tend to jump straight to internal, central resources and then try to establish how they support the behavior in question. An ecological approach is allowed to include such resources, but critically it allows (in fact, it requires) those internal dynamics to be coupled to external dynamics, via information. The key result of the ecological approach is that when this is allowed, and when those external resources are characterised correctly, a lot of the work in explaining the behavior is found to be done by these resources, which then radically alters the proposed role for the internal dynamics in the behavior. The task of angiogenesis is established by cells becoming hypoxic; this is what makes it so that angiogenesis behavior is required from the endothelial cells. As with animals, their behavior begins with the detection of information about the presence of the task dynamic. This information takes the form of a vascular endothelial growth factor (VEGF) array; VEGF is the primary signal from hypoxic cells. This signal can be called an array because it is not symmetric (Bentley currently models it as a simple linear gradient running from high at the hypoxic cell to low at the endothelial cell; this is likely true, although this is not a definite fact yet. More on this later.). The relevant external resources are therefore the dynamics of hypoxic tissue, and the VEGF information array those dynamics create (see this post for more detail on this distinction).The first set of task-relevant internal dynamics is a genetic mechanism implementing lateral inhibition of neighbouring cells. VEGF detection leads to the up-regulation of a ligand called Dll4, which binds to and activates Notch receptors on the surface of neighbouring cells. The first effect of this activation is to reduce the neighbor cell's sensitivity to VEGF. The cell sensing the most VEGF wins the race and successfully inhibits it's neighbours while becoming active itself. This leads to a 'salt-and-pepper' alternating pattern of active (tip) and inactive (stalk) endothelial cells. This ensures that the new sprouting blood vessels are optimally spaced.
This genetic mechanism requires multiple iterations to complete, each taking 4-6 hours. The second effect of Notch creates another set of task-relevant internal dynamics, by altering the adhesion strength of the cell membrane. Active cells produce more Notch which makes them weakly adhesive, while inactive cells produce less Notch which makes them strongly adhesive. When neighbouring cells have different levels of adhesion strength, this creates a unstable arrangement, and any random cell motion that improves that stability (by bringing strongly adhesive inactive cells closer, for example) is selected for. This leads to cell migration, which brings the Notch/Dll4 lateral inhibition mechanism back into play to restore the salt-and-pepper patterning, and the combination means that during angiogenesis behaviour, cells change roles and are somewhere along the active-inactive continuum when this happens, because adhesion-related cell migration only takes 3.7 hours on average. The next set of task-relevant internal dynamics is the transition of an endothelial cell to a migratory state. VEGF detection initiates the formation of mobile membrane protrusions called filopodia that carry VEGF membrane sensors out into the environment to explore the array. It also initiates the migration itself, both via the adhesion dynamics described above and by a contractile process. The filopodia begin forming and exploring on the order of minutes from the detection of VEGF. More filopodia, and better use of them to explore the VEGF array leads to more detection of VEGF, which then drives the dynamics described above (and seems to be required for this behavior to happen in the time it does).