Psychology Magazine

The Ebb and Flow of Physical and Cognitive Fatigue

By Deric Bownds @DericBownds
Matthews et al. Have investigated moment-to-moment fluctuations in fatigue using behavioral experiments and computational modeling to offer a precise account of how fatigue waxes (during physical and cognitive effort) and wanes (during rest).   From Bijleveld's review of the work:
A key insight from this work is that there are important parallels between physical and cognitive fatigue. Specifically, for both types of fatigue, the best-fitting computational model parsed fatigue into two components: a recoverable component (i.e., the share of fatigue that increases with effort and recovers with rest) and an unrecoverable component (i.e., the share of fatigue that only increases with effort and does not recover with rest, at least not within the ~1-h session). For physical fatigue, this result conceptually replicates a previous study; for cognitive fatigue, this result is new and original. Together, these findings paint a nuanced picture of how both physical and cognitive fatigue emerge over time. From an applied angle, the distinction between recoverable and unrecoverable fatigue is intriguing: it has potential implications for task design, such as in the contexts of education and work...On balance, physical and cognitive fatigue may be more similar than they are different.
Here is the Maltthews et al. abstract:
The willingness to exert effort for reward is essential but comes at the cost of fatigue. Theories suggest fatigue increases after both physical and cognitive exertion, subsequently reducing the motivation to exert effort. Yet a mechanistic understanding of how this happens on a moment-to-moment basis, and whether mechanisms are common to both mental and physical effort, is lacking. In two studies, participants reported momentary (trial-by-trial) ratings of fatigue during an effort-based decision-making task requiring either physical (grip-force) or cognitive (mental arithmetic) effort. Using a novel computational model, we show that fatigue fluctuates from trial-to-trial as a function of exerted effort and predicts subsequent choices. This mechanism was shared across the domains. Selective to the cognitive domain, committing errors also induced momentary increases in feelings of fatigue. These findings provide insight into the computations underlying the influence of effortful exertion on fatigue and motivation, in both physical and cognitive domains.

Back to Featured Articles on Logo Paperblog