Promotional literature for the Linus Pauling Heart Foundation, ca. 1992.
[Part 2 of 2]
With the results of their Lipoprotein(a) [LP(a)] experiments in hand, Linus Pauling and Matthias Rath decided to create a treatment and try to patent it. Their treatment relied on three main ideas: First, that increased Vitamin C levels in the bloodstream would prevent the creation of lesions to which Lp(a) might bind. Second, that lipoprotein binding inhibitors would detach any plaque that had already built up. And lastly, that Vitamin C would then also help the body to filter out Lp(a). In this way, it could be used to both treat and prevent cardiovascular disease (CVD) and other related cardiovascular problems.
The duo also saw great potential use for their research in surgery – specifically angiopathy, bypass surgery, organ transplantation, and hemodialysis. Lysine or other similar chemicals naturally help to speed the healing process and also act as blood clotting agents, therefore reducing the risk of blood loss during surgery. Also, patients undergoing organ transplant surgery, bypass surgery, and hemodialysis often suffer strong recurrences of CVD, which Pauling and Rath felt was due to depleted Vitamin C levels from blood loss. Similarly, diabetics often suffer from both inhibited Vitamin C absorption and higher levels of Lp(a), leading Pauling and Rath to hope that their work could help to treat diabetes-related CVD as well.
When living patients were using their treatment, the mixture was designed to be taken orally in pill or liquid form, or injected intravenously. Pauling also wondered if the mixture could be taken subcutaneously (injected into the deepest level of skin), percutaneously (injected into internal organs), or intramuscularly (injected into the muscle). When being used as preparation for transplant surgery, the organs to be transplanted were to be soaked in the mixture. Later research done by other scientists showed that Vitamin C is not absorbed into the bloodstream like it was thought, and that there are specific Vitamin C carrier molecules in the digestive tract, therefore limiting the amount of Vitamin C a person can absorb when taken orally. As such, injection is a much more effective method of getting Vitamin C into the bloodstream.
Pauling and Rath’s work was polarizing, if not unprecedented. As far back as the early 1970s, enthusiastic support for Vitamin C by Pauling and others had been a point of extreme controversy. Now, even with this latest batch of research, many scientists and doctors seemed to think that their conclusions were grossly incorrect, and in some cases even dangerous for people. Pauling, Rath, and their supporters felt that the harsh criticism emerged, at least in part, from pharmaceutical companies concerned about losing revenue if people stopped buying their expensive medications and instead bought inexpensive, common Vitamin C. On the flip side, many of the people who felt that their research was correct were absolutely steadfast in their support.
The controversy surprised Pauling. He repeatedly expressed these feelings, pointing out that he was not the first to make claims about the benefits of Vitamin C nor even the most extreme, and yet he was viewed as a controversial figure espousing fringe medicine. The Pauling-Rath team was not the only organization researching and promoting the positive effects of Vitamin C. Other groups, such as that led by Dr. Valentin Fuster of Harvard Medical School, were conducting similar experiments. Pauling and Rath attempted to collaborate with them where possible, often with success. But more generally the duo had to rely heavily upon individual case histories to support their research, largely because they were unable to convince major American institutions to conduct their own studies or to sponsor the Linus Pauling Institute of Science and Medicine’s studies.
Figure 1 from Pauling and Rath’s July 1990 patent application.
On July 27, 1993, Pauling and Rath were awarded a patent for the application filed in April 1990. On January 11, 1994, they received a second patent for the application filed in July 1990. Shortly afterward, in March 1994, the two filed a third application, following similar grounds, titled “Therapeutic Lysine Salt Composition and Method of Use.” The compound they were patenting was a mixture of ascorbate, nicotinic acid (also known as Vitamin B3 or niacin) and lysine, or a lysine derivative. The mixture was to be combined at a ratio of 4:1:1, and include a minimum of 400 mg of ascorbate, 100 mg niacin and 100 mg lysine. The mixture functioned more or less identically to the previous two patents, the major difference being the inclusion of Vitamin B3 for its antioxidant properties. Pauling and Rath also encouraged the inclusion of additional antioxidant vitamins.
This was the last patent that Pauling and Rath would file together. Shortly afterward the two experienced a falling out and Rath left LPISM. A few months later, on August 19, 1994, Linus Pauling passed away from cancer.
The third patent application was approved and awarded to Pauling and Rath in 1997. The two hadn’t made any profit off of the previous patents to speak of, and research that followed in the later 1990s and after 2000 showed that Vitamin C appeared to have no real effect on Lp(a). The discrepancy between the Pauling-Rath trials and subsequent tests seem to be attributable to the major differences between the two test subjects – humans and guinea pigs. However, other trials have shown that large doses of Vitamin C are useful in fighting cardiovascular disease – for reasons other than Lp(a) levels – and also work to combat stroke, decrease blood pressure and provide other health benefits.
Additional studies in the wake of Pauling and Rath have also revealed the complexity of Lp(a). The compound is today regarded to be somewhat of a mystery in terms of function, as scientists aren’t very clear on what it does in the human body. Also, “normal” levels of Lp(a) vary massively on an individual basis, a trait that seems to trend along racial lines. As a result, choosing Lp(a) as a target for medication has proven to be extremely difficult.