Biology Magazine

There is No Herd Immunity

Posted on the 31 August 2020 by Ccc1685 @ccc1685

In order for an infectious disease (e.g. COVID-19) to spread, the infectious agent (e.g. SARS-CoV-2) must jump from one person to another. The rate of this happening depends on the rate that an infectious person will come into contact with a susceptible person multiplied by the rate of the virus making the jump when the two people are nearby. The reproduction number R is obtained from the rate of infection spread times the length of time a person is infectious. If R is above one then a single person will infect more than one person on average and thus the pandemic will grow. If it is below one, then the pandemic will diminish. Herd immunity happens when enough people have been infected that the rate of finding a susceptible person becomes low enough that R drops below one. You can find the math behind this here.

However, a major assumption behind herd immunity is that once a person is infected they can never be infected again and this is not true for many infectious diseases such as other corona-viruses and the flu. There are reports that people can be reinfected by SARS-CoV-2. This is not fully validated but my money is on there being no lasting immunity to SARS-CoV-2 and this means that there is never any herd immunity. COVID-19 will just wax and wane forever.

This doesn't necessarily mean it will be deadly forever. In all likelihood, each time you are infected your immune response will be more measured and perhaps SARS-CoV-2 will eventually be no worse than the common cold or the seasonal flu. But the fatality rate for first time infection will still be high, especially for the elderly and vulnerable. Those people will need to remain vigilante until there is a vaccine, and there is still no guarantee that a vaccine will work in the field. If we're lucky and we get a working vaccine, it is likely that vaccine will not have lasting effect and just like the flu we will need to be vaccinated annually or even semi-annually.

Back to Featured Articles on Logo Paperblog