Biology Magazine

The Hash, the Merkle Tree, and Bitcoin

Posted on the 19 June 2021 by Ccc1685 @ccc1685

Although cryptocurrencies have been mainstream for quite a while, I still think the popular press has not done a great job explaining the details of how they work. There are several ideas behind a cryptocurrency like Bitcoin but the main one is the concept of a cryptographic hash. In simple terms, a hash is a way to transform an input sequence of characters (i.e. a string) into an output string such that it is hard to recreate the input string from the output string. A transformation with this property is called a one-way function. It is a machine where you get an output for an input but you can't get the input from the output and there does not exist any other machine that can get the input from the output. A hash is a one-way function where the output has a standard form, e.g. 64 characters long. So if each character is a bit, e.g. 0 or 1, then there are $2^64$ different possible hashes. What makes a hash useful are two properties. The first, as mentioned, is that it is a one-way function and the second is that two different inputs do not give the same hash, called collision avoidance. There have been decades of work on figuring out how to do this and institutions like the US National Institutes of Standards and Technology (NIST) actually publish hash standards like SHA-2.

Hashes are an important part of your life. If a company is responsible, then only the hash of your password is stored on their servers, and when you type your password into a website, it goes through the hashing function and the hash is checked against the stored version. That way, if there is security breach, only the hash list is stolen. If the company is very responsible, then your name and all of your information is also only stored in hash form. Part of the problem with past security breaches is that the companies stored actual information instead of hashed information. However, if you use the same password on different websites then the hash would be same if the same standard was used. Some really careful companies will "salt" your password with a random string (that is stored separately) before hashing. Or they will rehash your hash with salt. If you had a perfect hash, then the only way to break it would be to guess different inputs and see if it matches the desired output. The so-called complex math problem that Bitcoin solves before validating a transaction (and getting a reward) is finding a hash with a certain property but more on this later.

Now, one of the problems with hashing is that you need to deal with inputs of various sizes but you want the output to have a single uniform size. So even though a hash could have enough information capacity (i.e. entropy) to encode all of the world's information ten times over, it is computationally inconvenient to just feed the complete text of Hamlet directly into a single one-way function. This is where the concept of a Merkle tree becomes important. You start with some one-way function that takes inputs of some fixed length and it scrambles the characters in some way. If the input string is too short then you just add extra characters (called padding) but if it is too long you need to do something else. The way a Merkle tree works is to break the text into chunks of uniform size. It then hashes the first chunk, adds that to the next chunk, hash the result and repeat until you have included all the chunks. This repeated recursive hashing is the secret sauce of crypto-currencies.

Bitcoin tried to create a completely decentralized digital currency that could be secure and trusted. For a regular currency like the US dollar, the thing you are most concerned about is that the dollar you receive is not counterfeit. The way that problem is solved is to make the manufacturing process of the dollar bills very difficult to reproduce. So the dollar uses special paper with special marks and threads and special fonts and special ink. There are laws against making photocopiers with a higher resolution than the smallest print on a US bill to safeguard against counterfeiters. A problem with digital currencies is that you need to prevent double spending. The way this is historically solved is to have all transactions validated by a central authority.

Bitcoin solves these problems in a decentralized system by using a public ledger, called a blockchain that is time stamped, immutable and verifiable. The block chain keeps track of every Bitcoin transaction. So if you wanted to transfer one Bitcoin to someone else then the blockchain would show that your private Bitcoin ID has one less Bitcoin and the ID of the person you transferred to would have one extra Bitcoin. It is called a blockchain because each transaction (or set of transactions) is recorded into a block, the blocks are sequential, and each block contains a hash of the previous block. To validate a transaction you would need to validate each transaction leading up to the last block to validate that the hash on each block is correct. Thus the blockchain is a Merkle tree ledger where each entry is time stamped, immutable, and verifiable. If you want to change a block you need to change all the blocks before it.

However, the blockchain is not decentralized on its own. The ingredient to achieve that goal is to make the hash used in each block have a special form that is hard to find. This underlies the concept of "proof of work". Bitcoin uses a hash called SHA-256 which consists of a hexadecimal string of 64 characters (i.e. a base 16 number, usually with characters consisting of the digits 0-9 plus letters a-f). Before each block gets added to the chain, it must have a hash that has a set number of zeros at the front. In order to do this, you need to add some random numbers to the block or rearrange it so that the hash changes. This is what Bitcoin miners do. They try different variations of the block until they get a hash that has a certain number of zeros in front. The more zeros you need the more guesses you need and thus the harder the computation. If it's just one zero then one in 16 hashes will have that property and thus on average 16 tries will get you the hash and the right to add to the blockchain. Each time you require an additional zero, the number of possibilities decreases by a factor of 16 so it is 16 times harder to find one. Bitcoin wants to keep the computation time around 15 minutes so as computation speed increases it just adds another zero. The result is an endless arms race. The faster the computers get the harder the hash is to find. The incentive for miners to be fast is that they get some Bitcoins if they are successful in finding a desired hash and earning the right to add a block to the chain.

The actual details for how this works is pretty complicated. All the miners (or Bitcoin nodes) must validate that the proposed block is correct and then they all must agree to add that to the chain. The way it works in a decentralized way is that the code is written so that a node will follow the longest chain. In principle, this is secure because a dishonest miner who wants to change so e previous block must change all blocks following it and thus as long as there are more honest miners than dishonest ones, the dishonest ones can never catch up. However, there are issues when two miners simultaneously come up with a hash and they can't agree on which to follow. This is called a fork and has happened at least once I believe. This gets fixed eventually because honest miners will adopt the longest chain and the chain with the most adherents will grow the fastest. However, in reality there are only a small number of miners that regularly add to the chain so we're at a point now where a dishonest actor could possibly dominate the honest ones and change the blockchain. Proof of work is also not the only way to add to a blockchain. There are several creative ideas to make it less wasteful or even useful and I may write about them in the future. I'm somewhat skeptical about the long term viability of Bitcoin per se but I think the concepts of the blockchain are revolutionary and here to stay.


Back to Featured Articles on Logo Paperblog