Biology Magazine

The Drake Equation and the Cambrian Explosion

Posted on the 30 September 2015 by Ccc1685 @ccc1685

This summer billionaire Yuri Milner announced that he would spend upwards of 100 million dollars to search for extraterrestrial intelligent life (here is the New York Times article). This quest to see if we have company started about fifty years ago when Frank Drake pointed a radio telescope at some stars. To help estimate the number of possible civilizations, The Drake equation and the Cambrian explosion, Drake wrote down his celebrated equation,

The Drake equation and the Cambrian explosion

where

The Drake equation and the Cambrian explosion
is the rate of star formation,
The Drake equation and the Cambrian explosion
is the fraction of stars with planets,
The Drake equation and the Cambrian explosion
is the average number of planets per star that could support life,
The Drake equation and the Cambrian explosion
fraction of planets that develop life,
The Drake equation and the Cambrian explosion
fraction of those planets that develop intelligent life,
The Drake equation and the Cambrian explosion
fraction of civilizations that emit signals, and
The Drake equation and the Cambrian explosion
is the length of time civilizations emit signals.

The past few years have demonstrated that planets in the galaxy are likely to be plentiful and although the technology to locate earth-like planets does not yet exist, my guess is that they will also be plentiful. So does that mean that it is just a matter of time before we find ET? I'm going to come on record here and say no. My guess is that life is rare and intelligent life may be so rare that there could only be one civilization at a time in any given galaxy.

While we are now filling in the numbers for the left side of Drake's equation, we have absolutely no idea about the right side of the equation. However, I have good reason to believe that it is astronomically small and that reason is statistical independence. Although Drake characterized the probability of intelligent life into the probability of life forming times the probability it goes on to develop extra-planetary communication capability, there are actually a lot of factors in between. One striking example is the probability of the formation of multi-cellular life. In earth's history, for the better part of three and a half billion years we had mostly single cellular life and maybe a smattering of multicellular experiments. Then suddenly about half a billion years ago, we had the Cambrian Explosion where multicellular animal life from which we are descended suddenly came onto the scene. This implies that forming multicellular life is extremely difficult and it is easy to envision an earth where it never formed at all.

We can continue. If it weren't for an asteroid impact, the dinosaurs may never have gone extinct and mammals may not have developed. Even more recently, there seem to have been many species of advanced primates yet only one invented radios. Agriculture only developed ten thousand years ago, which meant that modern humans took about a hundred thousand years to discover it and only in one place. I think it is equally plausible that humans could have gone extinct like all of our other australopithecus and homo cousins. Life in the sea has existed much longer than life on land and there is no technologically advanced sea creature although I do think octopuses, dolphins and whales are intelligent.

We have around 100 billion stars in the galaxy and let's just say that each has a habitable planet. Well, if the probability of each stage of life is one in a billion and if we need say three stages to attain technology then the probability of finding ET is one in

The Drake equation and the Cambrian explosion
. I would say that this is an optimistic estimate. Probabilities get small really quickly when you multiply them together. The probability of single cellular life will be much higher. It is possible that there could be ten planets in our galaxy that have life but the chance that one of those is within a hundred light years will again be very low. However, I do think it is a worthwhile exercise to look for extracellular life, especially for oxygen or other life emitting gases in the atmosphere of exoplanets. It could tell us a lot about biology on earth.


Back to Featured Articles on Logo Paperblog

Magazines