Biology Magazine

The Blinking-dot Paradox of Consciousness

Posted on the 06 May 2014 by Ccc1685 @ccc1685

Suppose you could measure the activity of every neuron in the brain of an awake and behaving person, including all sensory and motor neurons. You could then represent the firing pattern of these neurons on a screen with a hundred billion pixels (or as many as needed). Each pixel would be identified with a neuron and the activity of the brain would be represented by blinking dots of light. The question then is whether or not the array of blinking dots is conscious (provided the original person was conscious). If you believe that everything about consciousness is represented by neuronal spikes, then you would be forced to answer yes. On the other hand, you must then acknowledge that a television screen simply outputting entries from a table is also conscious.

There are several layers to this possible paradox. The first is whether or not all the information required to fully decode the brain and emulate consciousness is in the spiking patterns of the neurons in the brain. It could be that you need the information contained in all the physical processes in the brain such as the movement of  ions and water molecules, conformational changes of ion channels, receptor trafficking, blood flow, glial cells, and so forth. The question is then what resolution is required. If there is some short distance cut-off so you could discretize the events then you could always construct a bigger screen with trillions of trillions of pixels and be faced with the same question. But suppose that there is no cut-off so you need an uncountable amount of information. Then consciousness would not be a computable phenomenon and there is no hope in ever understanding it. Also, at a small enough scale (Planck length) you would be forced to include quantum gravity effects as well, in which case Roger Penrose may have been on to something after all.

The second issue is whether or not there is a difference between a neural computation and reading from a table. Presumably, the spiking events in the brain are due to the extremely complex dynamics of synaptically coupled neurons in the presence of environmental inputs. Is there something intrinsically different between a numerical simulation of a brain model from reading the entries of a list? Would one exhibit consciousness while the other not? To make matters even more confusing, suppose you have a computer running a simulation of a brain. The firing of the neurons are now encoded by the states of various electronic components like transistors. Does this means that the circuits in the computer become conscious when the simulation is running? What if the computer were simultaneously running other programs, like a web browser, or even another brain simulation?  In a computer, the execution of a program is not tied to specific electronic components.  Transistors just change states as instructions arrive so when a computer is running multiple programs, the transistors simulating the brain are not conserved.  How then do they stay coherent to form a conscious perception?  In a normal computer operation, the results are fed to an output, which is then interpreted by us.  In a simulation of the brain, there is no output, there is just the simulation. Questions like these make me question my once unwavering faith in the monistic (i.e. not dualistic) theory of the brain.


Back to Featured Articles on Logo Paperblog