Current Magazine

Stanford Study May Shift Organic Solar Cell Research Paradigm

Posted on the 21 November 2013 by Dailyfusion @dailyfusion
Stanford scientists may have resolved a debate over how organic solar cells turn sunlight into electricity. The question: What causes electron-hole pairs (excitons) to split apart? The likely answer: A gradient at the solar cell interface between disordered polymers and ordered buckyballs splits the exciton, allowing the electron (purple) to escape and produce an electric current. Stanford scientists may have resolved a debate over how organic solar cells turn sunlight
into electricity. The question: What causes electron-hole pairs (excitons) to split apart? The
likely answer: A gradient at the solar cell interface between disordered polymers and ordered
buckyballs splits the exciton, allowing the electron (purple) to escape and produce an
electric current. (Credit: Koen Vandewal / Stanford University)

Scientists have spent decades trying to build flexible plastic solar cells efficient enough to compete with conventional silicon solar cells. Dramatic improvements in the efficiency of organic photovoltaics have been made in recent years, yet the fundamental question of how these devices convert sunlight into electricity is still hotly debated.

Now a Stanford University research team is weighing in on the controversy. Their findings, published in the Nov. 17 issue of the journal Nature Materials, indicate that the predominant working theory is incorrect, and could steer future efforts to design materials that boost the performance of organic cells.

“We know that organic photovoltaics are very good,” said study coauthor Michael McGehee, a professor of materials science and engineering at Stanford. “The question is, why are they so good? The answer is controversial.”

A typical organic solar cell consists of two semiconducting layers made of plastic polymers and other flexible materials. The cell generates electricity by absorbing particles of light, or photons.

When the cell absorbs light, a photon knocks out an electron in a polymer atom, leaving behind an empty space, which scientists refer to as a hole. The electron and the hole immediately form a bonded pair called an exciton. The exciton splits, allowing the electron to move independently to a hole created by another absorbed photon. This continuous movement of electrons from hole to hole produces an electric current.

In the study, the Stanford team addressed a long-standing debate over what causes the exciton to split.

“To generate a current, you have to separate the electron and the hole,” said senior author Alberto Salleo, an associate professor of materials science and engineering at Stanford. “That requires two different semiconducting materials. If the electron is attracted to material B more than material A, it drops into material B. In theory, the electron should remain bound to the hole even after it drops. The fundamental question that’s been around a long time is, how does this bound state split?”

One explanation widely accepted by scientists is known as the “hot exciton effect.” The idea is that the electron carries extra energy when it drops from material A to material B. That added energy gives the excited (“hot”) electron enough velocity to escape from the hole.

But that hypothesis did not stand up to experimental tests, according to the Stanford team.

“In our study, we found that the hot exciton effect does not exist,” Salleo said. “We measured optical emissions from the semiconducting materials and found that extra energy is not required to split an exciton.”

So what actually causes electron-hole pairs to separate?

“We haven’t really answered that question yet,” Salleo said. “We have a few hints. We think that the disordered arrangement of the plastic polymers in the semiconductor might help the electron get away.”

In a recent study, Salleo discovered that disorder at the molecular level actually improves the performance of semiconducting polymers in solar cells. By focusing on the inherent disorder of plastic polymers, researchers could design new materials that draw electrons away from the solar cell interface where the two semiconducting layers meet, he said.

“In organic solar cells, the interface is always more disordered than the area further away,” Salleo explained. “That creates a natural gradient that sucks the electron from the disordered regions into the ordered regions.”

The solar cells used in the experiment have an energy-conversion efficiency of about 9 percent. The Stanford team hopes to improve that performance by designing semiconductors that take advantage of the interplay between order and disorder.

“To make a better organic solar cell, people have been looking for materials that would give you a stronger hot exciton effect,” Salleo said. “They should instead try to figure out how the electron gets away without it being hot. This idea is pretty controversial. Itєs a fundamental shift in the way people think about photocurrent generation.”

Vandewal K., Albrecht S., Hoke E.T., Graham K.R., Widmer J., Douglas J.D., Schubert M., Mateker W.R., Bloking J.T., Burkhard G.F., Sellinger A., Fréchet J.M., Amassian A., Riede M.K., McGehee M.D., Neher D., & Salleo A. (2013). Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nature Materials PMID: 24240240

You Might Also Like :

Back to Featured Articles on Logo Paperblog

These articles might interest you :

  • Big Food Giants Manipulate Public Health Policy in China

    Food Giants Manipulate Public Health Policy China

    Coca-Cola is at it again. As soda sales decline in the United States and Europe, beverage companies look to emerging economies like China for growth. And, it... Read more

    The 15 January 2019 by   Dietdoctor
    DIET & WEIGHT, HEALTH, HEALTHY LIVING, MEDICINE
  • Jewellery for a Precious You

    Jewellery Precious

    Jewellery is always close to a woman’s heart. It completes her look and boost confidence. Considering the changing trends in jewellery fashion, it becomes... Read more

    The 15 January 2019 by   Dr.jenifer Sayyed
    LIFESTYLE
  • Rajshri Productions’ Next Is A Film On Friendship | Hum Chaar | Trailer

    Abhishek Dixit’s debut feature film Hum Chaar is a Bollywood film made under the banner of Rajshri’s film. Hum Chaar is written and directed by Abhishek Dixit. Read more

    The 15 January 2019 by   Themoviean
    ENTERTAINMENT, MOVIES
  • Saint Paul the First Hermit

    Saint Paul First Hermit

    Today is the feast day of Saint Paul the hermit. This is a sweet and delicate Oatmeal Bread topped with rolled oats and naturally sweetened with agave. Saint... Read more

    The 15 January 2019 by   Veronica46
    FOOD & DRINK, RECIPES
  • Irupathiyonnaam Noottaandu | Teaser | Pranav Mohanlal | Arun Gopy

    Arun Gopy’s Irupathiyonnaam Noottaandu is an upcoming Malayalam action-drama feature film starring Pranav Mohanlal and Zaya David in the lead roles. Read more

    The 15 January 2019 by   Themoviean
    ENTERTAINMENT, MOVIES
  • A Year Of Body Positivity

    Year Body Positivity

    Last January, as I sat there on New Years eve all set to make the same old resolutions I've made year after year for as long as I can remember, I realised how... Read more

    The 15 January 2019 by   Sparklesandstretchmarks
    DIARIES, SELF EXPRESSION
  • Garden Bloggers Bloom Day – Jan 2019

    Garden Bloggers Bloom 2019

    Euphorbia rigidaWhen I went out to take the photos for this blog post I was surprised at how much was in flower dotted around the garden. Read more

    The 15 January 2019 by   Patientgardener
    GARDENING, HOME