Offshore Wind Turbines Can Be Broken By Medium Storms

Posted on the 26 February 2013 by Dailyfusion @dailyfusion

The Lillgrund offshore wind farm in Sweden (Credit: Tomasz Sienicki http://commons.wikimedia.org/wiki/User:Tsca)

With wind power being the fastest growing renewable energy sector in the world, there are a lot of offshore wind farms under construction right now, and even more planned. However wind turbines at sea are susceptible to storms, and can be broken down like matches even by medium-sized waves. Mathematicians at University of Oslo are trying to explain that process and find a way to prevent it from happening.

When waves above 13 metres hit wind turbines, an unfortunate force arises at the rear of the turbine. This is called ringing. John Grue is now looking for a general mathematical formula that can explain the special phenomenon.

Medium-sized waves can break wind turbines at sea like matches. These waves occur even in small storms, which are quite common in the Norwegian Sea. “The problem is, we still do not know exactly when the wind turbines may break,” says Professor John Grue from the Department of Mathematics at the University of Oslo. Grue is one of the world’s foremost experts on wave research. In 1989 he discovered an inexplicable wave phenomenon called ringing, which is a special type of vibration that occurs when choppy waves hit marine installations. The discovery was made in a 25-metre long wave laboratory located in the basement of the mathematics building at Blindern Campus.

So far scientists have studied ringing in small and large waves, but as it turns out, ringing is more common in medium-size waves. For wind turbines at sea with a cylinder diameter of eight metres, the worst waves are those that are more than 13 metres high and have an 11-second interval between them.

Financial ruin

The ringing problem may increase significantly in the years ahead. There are plans to build tens of thousands of wind turbines at sea.

“If we do not take ringing into consideration, offshore wind turbine parks can lead to financial ruin,” warns John Grue.

Today, the largest windmill parks at sea are outside the coasts of Denmark and Great Britain. They are nevertheless like small miniatures compared to Statkraft and Statoil’s enormous plans on the Dogger Bank outside Scotland. This windmill park is to produce as much electricity as 60 to 90 Alta power plants. A windmill park with the capacity of two Alta power plants will be built outside Møre og Romsdal.

“Thus far it has not been possible to measure the force exerted by ringing. Laboratory measurements show that the biggest vibrations in the wind turbines occur just after the wave has passed and not when the wave hits the turbine. Right after the crest of the wave has passed, a second force hits the structure. If the second force resonates with the structural frequency of the wind turbine, the vibration is strong. This means that the wind turbine is first exposed to one force, and is then shaken by another force. When specific types of waves are repeated this causes the wear to be especially pronounced. This increases the danger of fatigue.”

It is precisely this secondary force that creates ringing and that the mathematicians until now have not managed to calculate.

“If we do not take ringing into consideration, offshore wind turbine parks can lead to financial ruin,” warns John Grue. (Foto: Yngve Vogt)

Unfortunate vibrations

All structures have their own vibration frequencies, whether they are wind turbines, bridges, oil rigs or vessels.

When the vibration matches the structural frequency, things get tough. This phenomenon is called resonance, and can be compared to the steady march of soldiers on a bridge. If the soldiers march in time with the structural frequency of the bridge, it can collapse.Unrealistic calculations

The Norwegian University of Science and Technology and the Massachusetts Institute of Technology (MIT) have already made a number of calculations of ringing. Ecole Centrale Marseille and the French Bureau Veritas have also made such calculations. Det Norske Veritas is among those who use versions of these models.

“Current models are the best we have, but the estimates are too rough and erroneous. The theories are applied far outside of their area of validity. This means that we cannot calculate the fatigue adequately.”

Ringing is not related to turbulence. Ringing is systematic and is about high underpressure at back of the cylinder.

Difficult mathematics

Internationally, very little has been done on this phenomenon. John Grue now has two Doctoral Research Fellows calculating these movements. He also collaborates with the Danish research community on wind power at Risø National Laboratory and the Technical University of Denmark.

“Ringing is very difficult to calculate. There is great uncertainty. We want more precise descriptions of the physics of ringing. We are now trying sophisticated surface elevation models and complex calculations to reproduce these measurements accurately. We want to show that the ringing force arises systematically according to a general mathematical formula.”

Saga Petroleum has previously conducted an extensive set of measurements of the ringing force in waves.

“These fit our measurements very well”, says Grue.

Differences between deep and shallow waters

The scientists must also consider whether the installations are in deep or shallow waters.

“The structural frequency also depends on the conditions on the seabed.

You can compare it to a flagpole in a storm. The flag pole vibrates differently depending on whether the pole is fixed in concrete or on softer ground.”

“There has been no research on the connection between vibrations and the conditions on the seabed.”

Oil rig damaged

Ringing does not just harm wind turbines. Ringing has already been a great problem for the oil industry. The designers of the YME platform did not tak ringing into account, and lost NOK 12 billion.

“It is possible to build your way out of the ringing problem by strengthening the oil rigs. However, it is not financially profitable to do the same with wind turbines”, says John Grue.

Improves the models

Arne Nestegård, Chief Specialist in hydrodynamics at Det Norske Veritas, confirms to Apollon that wind turbines at moderate depths may be exposed to high-frequency resonant oscillations if the waves are extreme, but they safeguard against this. Nestegård says that in the past twenty years, Veritas has developed ringing models and that they now work on improving the models for wind turbines at sea.

By Yngve Vogt

You Might Also Like :

• I Want to Meet You in 2019 — Yes, You!

If there’s one thing I’ve learned on my startup journey, it’s the value of a network. Over the last year I’ve met hundreds of amazing people who have opened... Read more

The 13 December 2018 by   Trendytechie
FASHION, GADGETS, LIFESTYLE, TECH
• I’m One Tired Mother Trucker.

Less than two weeks from Christmas. I feel like I should be happy and joyous and singing Jingle Bells off-key like every year. But, alas, I am a tired mother... Read more

The 13 December 2018 by   Midlifemargaritas
LIFESTYLE
• Track Of The Day: Manic Street Preachers - Sequels Of Forgotten Wars

Continuing our look at tracks from 2018's best albums, here's the mighty Manic Street Preachers with one of the many highlights from 13th LP 'Resistance Is... Read more

The 13 December 2018 by   Rw/ff
ENTERTAINMENT, MUSIC
• Budget-friendly Geocaching Day Trips Will Get Your Kids In the Holiday Spirit

If you're looking for day trip ideas which will get your kids into the holiday spirit, you should give geocaching a try. In case you are unfamiliar, geocaching... Read more

The 13 December 2018 by   Catherine Mcdiarmid-Watt
FAMILY, FINANCE, SHOPPING
• Bombardier Challenger 300

@ San Francisco International Airport, CA June 2018 This Challenger is on final approach to SFO. First flown in 2001, the Challenger 300 is a 3,000+ mile range... Read more

The 13 December 2018 by   Htam
PHOTOGRAPHY, SOCIETY
• 20 YEARS AGO: Delakota - 555

A pick from another one of 1998's best albums. Delakota's first and only album 'One Love' combined the big beat and hip hop sounds of the late 90s with strong... Read more

The 13 December 2018 by   Rw/ff
ENTERTAINMENT, MUSIC
• New Practices and Techniques I'm Exploring Lately

Glazed Cruller in Space by Kenny ScharfIn my post My Evolving Home Practice ) in April of this year I described some of the main things I had been focusing on i... Read more

The 13 December 2018 by   Ninazolotow
FITNESS, HEALTH, HEALTHY LIVING