Recent paper in Molecular Endocrinology 7:1194-206. doi: 10.1210/me.2014-1069:
John A. Blackford, Jr., Kyle R. Brimacombe, Edward J. Dougherty , Madhumita Pradhan, Min Shen, Zhuyin Li, Douglas S. Auld, Carson C. Chow, Christopher P. Austin, and S. Stoney Simons, Jr.
Abstract: Glucocorticoid steroids affect almost every tissue-type and thus are widely used to treat a variety of human pathologies. However, the severity of numerous side-effects limits the frequency and duration of glucocorticoid treatments. Of the numerous approaches to control off-target responses to glucocorticoids, small molecules and pharmaceuticals offer several advantages. Here we describe a new, extended high throughput screen in intact cells to identify small molecule modulators of dexamethasone-induced glucocorticoid receptor (GR) transcriptional activity. The novelty of this assay is that it monitors changes in both GR maximal activity (Amax) and EC50, or the position of the dexamethasone dose-response curve. Upon screening 1280 chemicals, ten with the greatest change in the absolute value of Amax or EC50 were selected for further examination. Qualitatively identical behaviors for 60 –90% of the chemicals were observed in a completely different system, suggesting that other systems will be similarly affected by these chemicals. Additional analysis of the ten chemicals in a recently described competition assay determined their kinetically-defined mechanism and site of action. Some chemicals had similar mechanisms of action despite divergent effects on the level of GR-induced product. These combined assays offer a straightforward method of identifying numerous new pharmaceuticals that can alter GR transactivation in ways that could be clinically useful.