Biology Magazine

New Paper on Neural Networks

Posted on the 22 March 2013 by Ccc1685 @ccc1685

Michael Buice and I have just published a review paper of our work on how to go beyond mean field theory for systems of coupled neurons. The paper can be obtained here. Michael and I actually pursued two lines of thought on how to go beyond mean field theory and we show how the two are related in this review. The first line started in trying to understand how to create a dynamic statistical theory of a high dimensional fully deterministic system. We first applied the method to the Kuramoto system of coupled oscillators but the formalism could apply to any system. Our recent paper in PLoS Computational Biology was an application for a network of synaptically coupled spiking neurons. I’ve written about this work multiple times (e.g. here,  here, and here). In this series of papers, we looked at how you can compute fluctuations around the infinite system size limit, which defines mean field theory for the system, when you have a finite number of neurons. We used the inverse number of neurons as a perturbative expansion parameter but the formalism could be generalized to expand in any small parameter, such as the inverse of a slow time scale.

The second line of thought was with regards to the question of how to generalize the Wilson-Cowan equation, which is a phenomenological population activity equation for a set of neurons, which I summarized here. That paper built upon the work that Michael had started in his PhD thesis with Jack Cowan. The Wilson-Cowan equation is a mean field theory of some system but it does not specify what that system is. Michael considered the variable in the Wilson-Cowan equation to be the rate (stochastic intensity) of a Poisson process and prescribed a microscopic stochastic system, dubbed the spike model, that was consistent with the Wilson-Cowan equation. He then considered deviations away from pure Poisson statistics. The expansion parameter in this case was more obscure. Away from a bifurcation (i.e. critical point) the statistics of firing would be pure Poisson but they would deviate near the critical point, so the small parameter was the inverse distance to criticality. Michael, Jack and I then derived a set of self-consistent set of equations for the mean rate and rate correlations that generalized the Wilson-Cowan equation.

The unifying theme of both approaches is that these systems can be described by either a hierarchy of moment equations or equivalently as a functional or path integral. This all boils down to the fact that any stochastic system is equivalently described by a distribution function or the moments of the distribution. Generally, it is impossible to explicitly calculate or compute these quantities but one can apply perturbation theory to extract meaningful quantities. For a path integral, this involves using Laplace’s method or the method of steepest descents to approximate an integral and in the moment hierarchy method it involves finding ways to truncate or close the system. These methods are also directly related to WKB expansion, but I’ll leave that connection to another post.

Back to Featured Articles on Logo Paperblog