Biology Magazine

New Paper on Fat

Posted on the 19 April 2013 by Ccc1685 @ccc1685

Sex-Associated Differences in Free Fatty Acid Flux of Obese Adolescents.

Diane C Adler-Wailes, Vipul Periwal, Asem H Ali, Sheila M Brady, Jennifer R McDuffie, Gabriel I Uwaifo, Marian Tanofsky-Kraff, Christine G Salaita, Van S Hubbard, James C Reynolds, Carson C Chow, Anne E Sumner, Jack A Yanovski

Section on Growth and Obesity (D.C.A.-W., A.H.A., S.J.R.M., G.I.U., M.T.-K., J.A.Y.), Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development; Mathematical Cell Modeling Section (V.P., C.C.C.), Division of Extramural Activities (C.G.S.), Division of Nutrition Research Coordination (V.S.H.), and Laboratory of Endocrinology and Receptor Biology (A.E.S.), National Institute of Diabetes and Digestive and Kidney Diseases; and Nuclear Medicine Department (J.C.R.), Hatfield Clinical Research Center, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland 20892.

The Journal of clinical endocrinology and metabolism (impact factor: 6.5). 02/2013; DOI:10.1210/jc.2012-3817

ABSTRACT Context: In obesity, increases in free fatty acid (FFA) flux can predict development of insulin resistance. Adult women release more FFA relative to resting energy expenditure (REE) and have greater FFA clearance rates than men. In adolescents, it is unknown whether sex differences in FFA flux occur. Objective: Our objective was to determine the associations of sex, REE, and body composition with FFA kinetics in obese adolescents. Participants: Participants were from a convenience sample of 112 non-Hispanic white and black adolescents (31% male; age range, 12-18 years; body mass index SD score range, 1.6-3.1) studied before initiating obesity treatment. Main Outcome Measures: Glucose, insulin, and FFA were measured during insulin-modified frequently sampled iv glucose tolerance tests. Minimal models for glucose and FFA calculated insulin sensitivity index (SI) and FFA kinetics, including maximum (l0 + l2) and insulin-suppressed (l2) lipolysis rates, clearance rate constant (cf), and insulin concentration for 50% lipolysis suppression (ED50). Relationships of FFA measures to sex, REE, fat mass (FM), lean body mass (LBM) and visceral adipose tissue (VAT) were examined. Results: In models accounting for age, race, pubertal status, height, FM, and LBM, we found sex, pubertal status, age, and REE independently contributed to the prediction of l2 and l0 + l2 (P < .05). Sex and REE independently predicted ED50 (P < .05). Sex, FM/VAT, and LBM were independent predictors of cf. Girls had greater l2, l0 + l2 and ED50 (P < .05, adjusted for REE) and greater cf (P < .05, adjusted for FM or VAT) than boys. Conclusion: Independent of the effects of REE and FM, FFA kinetics differ significantly in obese adolescent girls and boys, suggesting greater FFA flux among girls.


Back to Featured Articles on Logo Paperblog