Current Magazine

Catalyst Promises Commercially Viable Hydrogen Production

Posted on the 18 July 2014 by Dailyfusion @dailyfusion
Catalyst Promises Commercially Viable Hydrogen Production(Credit: Flickr @ Harald Hoyer https://www.flickr.com/photos/hhoyer/)

Rutgers researchers have developed a new catalyst for commercially viable hydrogen production. It is based on carbon nanotubes and performs almost as well as cost-prohibitive platinum-based catalysts.

According to the university’s press release, the Rutgers technology is also far more efficient than less-expensive catalysts investigated to-date.

SEE ALSO: Scientists Create Photoelectrochemical Cell Inspired by Moth’s Eye

A new catalyst promises commercially viable hydrogen production

A new catalyst promises commercially viable hydrogen production. (Credit: Tewodros Asefa / Rutgers University)

“Hydrogen has long been expected to play a vital role in our future energy landscapes by mitigating, if not completely eliminating, our reliance on fossil fuels,” said Tewodros (Teddy) Asefa, associate professor of chemistry and chemical biology in the School of Arts and Sciences. “We have developed a sustainable chemical catalyst that, we hope with the right industry partner, can bring this vision to life.”

Asefa is also an associate professor of chemical and biochemical engineering in the School of Engineering.

He and his colleagues based their new catalyst on carbon nanotubes—one-atom-thick sheets of carbon rolled into tubes 10,000 times thinner than a human hair.

Finding ways to make electrolysis reactions commercially viable is important because processes that make hydrogen today start with methane—itself a fossil fuel. The need to consume fossil fuel therefore negates current claims that hydrogen is a “green” fuel.

Electrolysis, however, could produce hydrogen using electricity generated by renewable sources, such as solar, wind and hydro energy, or by carbon-neutral sources, such as nuclear energy. And even if fossil fuels were used for electrolysis, the higher efficiency and better emissions controls of large power plants could give hydrogen fuel cells an advantage over less efficient and more polluting gasoline and diesel engines in millions of vehicles and other applications.

In a recent scientific paper published in Angewandte Chemie International Edition (see footnote), Asefa and his colleagues reported that their technology, called “noble metal-free nitrogen-rich carbon nanotubes,” efficiently catalyze the hydrogen evolution reaction with activities close to that of platinum. They also function well in acidic, neutral or basic conditions, allowing them to be coupled with the best available oxygen-evolving catalysts that also play crucial roles in the water-splitting reaction.

The researchers have filed for a patent on the catalyst, which is available for licensing or research collaborations through the Rutgers Office of Technology Commercialization. The National Science Foundation funded the research.

Asefa, an expert in inorganic and materials chemistry, joined the Rutgers faculty in 2009 after four years as an assistant professor at Syracuse University. Originally from Ethiopia, he is a resident of Montgomery Township, N.J. In addition to catalysis and nanocatalysis, his research interests include novel inorganic nanomaterials and nanomaterials for biological, medical biosensing and solar cell applications.

Zou, X., Huang, X., Goswami, A., Silva, R., Sathe, B., Mikmeková, E., & Asefa, T. (2014). Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values Angewandte Chemie, 126 (17), 4461-4465 DOI: 10.1002/ange.201311111

Back to Featured Articles on Logo Paperblog