In light of the new omicron variant and breakthrough infections in people who have been vaccinated or previously infected, I was asked to discuss what a model would predict. The simplest model that includes reinfection is an SIRS model, where R, which stands for recovered, can become susceptible again. The equations have the form
I have ignored death due to infection for now. So like the standard SIR model, susceptible, S, have a chance of being infected, I, if they contact I. I then recovers to R but then has a chance to become S again. Starting from an initial condition of S = N and I very small, then S will decrease as I grows.
The first thing to note that the number of people N is conserved in this model (as it should be). You can see this by noting that the sum of the right hand sides of all the equations is zero. Thus
To show this, you first must find an equilibrium or fixed point. You do this by setting all the derivatives to zero and solving the remaining equations. I have always found the fixed point to be the most miraculous state of any dynamical system. In a churning sea where variables move in all directions, there is one place that is perfectly still. The fixed point equations satisfy
There is a trivial fixed point given by S = N and I = R = 0. This is the case of no infection. However, if
Solving the third equation gives us
which we can substitute into the first equation to get back the second equation. So to find I, we need to use the conservation condition S + I + R = N which after substituting for S and R gives
which we then back substitute to get
The fact that
The next question is whether this fixed point is stable. Just because a fixed point exists doesn't mean it is stable. The classic example is a pencil balancing on its tip. Any small perturbation will knock it over. There are many mathematical definitions of stability but they essentially boil down to - does the system return to the equilibrium if you move away from it. The most straightforward way to assess stability is to linearize the system around the fixed point and then see if the linearized system grows or decays (or stays still). We linearize because linear systems are the only types of dynamical systems that can always be solved systematically. Generalizable methods to solve nonlinear systems do not exist. That is why people such as myself can devote a career to studying them. Each system is its own thing. There are standard methods you can try to use but there is no recipe that will always work.
To linearize around a fixed point we first transform to a coordinate system around that fixed point by defining
So now s = h = r = 0 is the fixed point. I used lower case h because lower case i is usually
which we can write as a matrix equation
That was a lot of tedious math to say that with reinfection, the simplest dynamics will lead to a stable equilibrium where a fixed fraction of the population is infected. The fraction increases with increasing