Designing PID Controller in Matlab Using Zegler Nichols

By Sumit Malhotra @sumitmalhotra

%type the following command in matlab to get two closed loop transfer function and there 

%step response to check the overshoot and settling time criterion

clc

clear all

kp=3;

Ti1=2.2214;

Ti2=2.5650;

Td1=0.5554;

Td2=0.6412′

Kcr=kp;

s = tf(‘s’); 

Gc1=kp*(1+(1/(Ti1*s)))

Gc2=kp*(1+(1/(Ti1*s)))

Gp=1/(s^4+(2*s^3)+(3.5*s^2)+(3*s))

%closed loop transfer function

Den1=(1+(1/(Ti1*s))+(Td1*s))

Den2=(1+(1/(Ti2*s))+(Td2*s))

T1=Gc1*(Gp/(1+(Den1*Gp*kp)))

T2=Gc1*(Gp/(1+(Den2*Gp*kp)))

step(T1)

stepinfo(T1)

grid

figure

step(T2)

stepinfo(T2)

%In command window we get

Continuous-time transfer function.

T1 =

  8.882 s^6 + 21.76 s^5 + 39.09 s^4 + 40.64 s^3 + 12 s^2

  ——————————————————————————————————

  4.935 s^10 + 19.74 s^9 + 54.28 s^8 + 103.6 s^7 + 138.4 s^6 + 142.7 s^5 + 98.3 s^4 + 40.64 s^3 + 12 s^2

Continuous-time transfer function.

T2 =

  10.26 s^6 + 25.13 s^5 + 45.13 s^4 + 46.93 s^3 + 13.85 s^2

  ——————————————————————————————————-

  5.698 s^10 + 22.79 s^9 + 62.68 s^8 + 120.5 s^7 + 161.6 s^6 + 167.2 s^5 + 114.9 s^4 + 44.76 s^3 + 12 s^2

Continuous-time transfer function.

system_info_T1 = 

  RiseTime: 1.3153

  SettlingTime: 18.8828

  SettlingMin: 0.7410

  SettlingMax: 1.8293

  Overshoot: 82.9269

  Undershoot: 0

  Peak: 1.8293

  PeakTime: 4.3556

system_info_T2 = 

  RiseTime: 1.4426

  SettlingTime: 21.3147

  SettlingMin: 0.9923

  SettlingMax: 1.8059

  Overshoot: 56.4002

  Undershoot: 0

  Peak: 1.8059

  PeakTime: 4.3987

See step responses in figure window for T1 and T2 transfer function

For T1 Step response is

system_info_T1 = 

  RiseTime: 1.3153

  SettlingTime: 18.8828

  SettlingMin: 0.7410

  SettlingMax: 1.8293

  Overshoot: 82.9269

  Undershoot: 0

  Peak: 1.8293

  PeakTime: 4.3556

For T2 we got

system_info_T2 = 

  RiseTime: 1.4426

  SettlingTime: 21.3147

  SettlingMin: 0.9923

  SettlingMax: 1.8059

  Overshoot: 56.4002

  Undershoot: 0

  Peak: 1.8059

  PeakTime: 4.3987

We will work with T1 and T2 both, closed loop transfer functions to meet design criteria of:-

  1. Less than 20 percent overshoot
  2. Less 6 seconds settling time

%New line of Code to meet design criteria by ziegler method2

% to meet design criteria we need to tune the parameters of Kp, Ti , Td

%keep on varying the values until we get to the desired level of overshoot 

% and Settling time

clc

clear all

clc

clear all

kcr=2.0199;

kp=0.6*kcr;

Ti1=7.2214;

Ti2=10.13087;

Td1=0.5554;

Td2=0.0000006777777777;

s = tf(‘s’); 

Gc1=kp*(1+(1/(Ti1*s)))

Gc2=kp*(1+(1/(Ti1*s)))

Gp=1/(s^4+(2*s^3)+(3.5*s^2)+(3*s))

%closed loop transfer function

Den1=(1+(1/(Ti1*s))+(Td1*s))

Den2=(1+(1/(Ti2*s))+(Td2*s))

T1=Gc1*(Gp/(1+(Den1*Gp*kp)))

T2=Gc1*(Gp/(1+(Den2*Gp*kp)))

step(T1)

system_info_T1=stepinfo(T1)

figure

step(T2)

system_info_T2=stepinfo(T2)

grid

%open command window 

%We get

Gc1 =

  8.752 s + 1.212

  —————

  7.221 s

Continuous-time transfer function.

Gc2 =

  8.752 s + 1.212

  —————

  7.221 s

Continuous-time transfer function.

Gp =

  1

  —————————

  s^4 + 2 s^3 + 3.5 s^2 + 3 s

Continuous-time transfer function.

Den1 =

  4.011 s^2 + 7.221 s + 1

  ———————–

  7.221 s

Continuous-time transfer function.

Den2 =

  6.866e-06 s^2 + 10.13 s + 1

  —————————

  10.13 s

Continuous-time transfer function.

T1 =

  63.2 s^6 + 135.2 s^5 + 238.7 s^4 + 220.2 s^3 + 26.26 s^2

  ——————————————————————————————————-

  52.15 s^10 + 208.6 s^9 + 573.6 s^8 + 1078 s^7 + 1398 s^6 + 1353 s^5 + 813.4 s^4 + 220.2 s^3 + 26.26 s^2

Continuous-time transfer function.

T2 =

  88.66 s^6 + 189.6 s^5 + 334.9 s^4 + 309 s^3 + 36.83 s^2

  ——————————————————————————————————-

  73.16 s^10 + 292.6 s^9 + 804.7 s^8 + 1463 s^7 + 1863 s^6 + 1722 s^5 + 986.3 s^4 + 296.6 s^3 + 26.26 s^2

Continuous-time transfer function.

system_info_T1 = 

  RiseTime: 2.0500

  SettlingTime: 20.4670

  SettlingMin: 0.9229

  SettlingMax: 1.3005

  Overshoot: 30.0466

  Undershoot: 0

  Peak: 1.3005

  PeakTime: 8.2356

system_info_T2 = 

  RiseTime: 2.8632

  SettlingTime: 7.0030

  SettlingMin: 1.2791

  SettlingMax: 1.4309

  Overshoot: 1.9992

  Undershoot: 0

  Peak: 1.4309

  PeakTime: 9.0263

%observations:-

%After lot of try we can get settling time for transfer function T2  close to 7 seconds and overshoot approx 2 percent.

%T2 plot

Even Tuning in automatic PID tuner it was hard to tune this….Hence best suited values are given to meet the design criterion which is often a practical case…..

Answer (b).

%in order to design the lead compensator we will use matlab tool sisotool

%write following command in MATLAb window first

 clear all

 s = tf(‘s’); 

 Gp=1/(s^4+(2*s^3)+(3.5*s^2)+(3*s))

sisotool(Gp)

% this will open a GUI window 

%here go to compensator window and write down the tuned values of lead compensator %as shown below

Below figure is obtained after placing suitable controller with above values as shown

Or we can write our controller as

GC_lead=1.4998*(1+s)/(1+1.1s)

Now to see the plot go to Analysis plot window and select step response as shown

% also all the files or 18 different criteria are attached 

Observe the step response above we get settling time of 6.2 seconds and overshoot approx 18 %.

Answer ©

%now we will see step responses in the MATLAB for both compensated closed %loop system and uncompensated closed loop system

 clc

clear all

s = tf(‘s’); 

Gp=1/(s^4+(2*s^3)+(3.5*s^2)+(3*s))

uncmp_tr=Gp/(1+Gp);

Kc=0.9673;

Gc=(s+0.2532)/(s+0.0102);

%closed loop transfer function

sys_comp=(Kc*Gp*Gc)/(1+(Kc*Gp*Gc))

% ***** Unit-step responses of compensated system and

% uncompensated system *****

% ***** Enter the numerators and denominators of the

% compensated and uncompensated systems *****

% ***** Specify the time range (such as t = 0:0.1:40) and enter

% step command and plot command. *****

t = 0:0.1:40;

c1 = step(uncmp_tr,t);

c2 = step(sys_comp,t);

plot(t,c1,’-‘,t,c2,’.’)

grid

text(8,0.95,’Compensated system’)

text(7,1.4,’Uncompensated system’)

title(‘Unit-Step Responses of Compensated and Uncompensated Systems’)

xlabel(‘t Sec’)

ylabel(‘Outputs c1 and c2’)

uncompensated=stepinfo(uncmp_tr)

compensated=stepinfo(sys_comp)

%Now see figure window

%See the effect of lag compensator

%open command window to compare important parameters of compensated and uncompensated system

Answer (d)

For part a pid controller we got…..

Step and ramp response as shown …

%type this code for part a responses

clc

clear all

kcr=2.0199;

kp=0.6*kcr;

Ti1=7.2214;

Ti2=10.13087;

Td1=0.5554;

Td2=0.0000006777777777;

s = tf(‘s’); 

Gc1=kp*(1+(1/(Ti1*s)))

Gc2=kp*(1+(1/(Ti1*s)))

Gp=1/(s^4+(2*s^3)+(3.5*s^2)+(3*s))

%closed loop transfer function

Den1=(1+(1/(Ti1*s))+(Td1*s))

Den2=(1+(1/(Ti2*s))+(Td2*s))

T1=Gc1*(Gp/(1+(Den1*Gp*kp)))

T2=Gc1*(Gp/(1+(Den2*Gp*kp)))

step(T1)

system_info_T1=stepinfo(T1)

figure

step(T2)

system_info_T2=stepinfo(T2)

grid

title(‘step response of T2 transfer function’)

figure

t=0:0.1:20

ramp=t;

[y,t]=lsim(T2,ramp,t)

plot(t,y)

grid

title(‘ramp response of T2 transfer function’)

For part b lead compensator.. we got step and ramp plots as shown…

%type the code

%step and ramp response part b lead compensator

clc

clear all

s = tf(‘s’); 

Gp=1/(s^4+(2*s^3)+(3.5*s^2)+(3*s))

GC_lead=1.4998*(1+s)/(1+(1.1*s))

compensated_sys=(Gp*GC_lead)/(1+(Gp*GC_lead));

figure

%step response

step(compensated_sys)

title(‘step response of compensated system’)

stepinfo(compensated_sys)

figure

t=0:0.1:20;

ramp=t;

[y,t]=lsim(compensated_sys,ramp,t);

plot(t,y)

hold on

[y,t]=lsim(Gp,ramp,t);

plot(t,y)

legend(‘compensated system’,’uncompensated system’)

grid

title(‘ramp response compensatedd and uncompensated system’)

For part c lag compensator we got step and ramp plots as shown…..

%type the code to get step and ramp response

clc

clear all

s = tf(‘s’); 

Gp=1/(s^4+(2*s^3)+(3.5*s^2)+(3*s))

uncmp_tr=Gp/(1+Gp);

Kc=0.9673;

Gc=(s+0.2532)/(s+0.0102);

%closed loop transfer function

sys_comp=(Kc*Gp*Gc)/(1+(Kc*Gp*Gc))

% ***** Unit-step responses of compensated system and

% uncompensated system *****

% ***** Enter the numerators and denominators of the

% compensated and uncompensated systems *****

% ***** Specify the time range (such as t = 0:0.1:40) and enter

% step command and plot command. *****

t = 0:0.1:40;

c1 = step(uncmp_tr,t);

c2 = step(sys_comp,t);

plot(t,c1,’-‘,t,c2,’.’)

grid

text(8,0.95,’Compensated system’)

text(7,1.4,’Uncompensated system’)

title(‘Unit-Step Responses of Compensated and Uncompensated Systems’)

xlabel(‘t Sec’)

ylabel(‘Outputs c1 and c2’)

figure

t=0:0.1:20;

ramp=t;

[y,t]=lsim(uncmp_tr,ramp,t);

plot(t,y)

hold on

[y,t]=lsim(sys_comp,ramp,t);

plot(t,y)

legend(‘uncompensated system’,’compensated system’)

grid

title(‘ramp response compensatedd and uncompensated system’)

Answer (e)

See the step response from pid controller tuned after Ziegler nicolus techniques ….to avoid set kick point.

This figure is step response after tuning ko, ti and td values in MATLAB. 

Also, parameters of responses are…

system_info_T2 = 

  RiseTime: 2.8632

  SettlingTime: 7.0030

  SettlingMin: 1.2791

  SettlingMax: 1.4309

  Overshoot: 1.9992

  Undershoot: 0

  Peak: 1.4309

  PeakTime: 9.0263

And controller suggested after tuning is having transfer function

Gc2 =

  8.752 s + 1.212

  —————

  7.221 s

Notice we got very low overshoot approx 2 percent but settling time is approx 7 seconds….

Similarly for lead compensator we got following results….

Controller transfer function….

GC_lead=1.4998*(1+s)/(1+1.1s)

And

Step response is having…values..

Observe the step response above we get settling time of 6.2 seconds and overshoot approx 18 %.

Hence with overall comparison we can say we got better settling time with designed lead compensator but with respact to overshoot 

We have better results with pid controller.