COVID-19 Paper

Posted on the 30 April 2020 by Ccc1685 @ccc1685

First draft of our paper can be downloaded from this link. I'll post more details about it later.

Global prediction of unreported SARS-CoV2 infection from observed COVID-19 cases

Carson C. Chow 1*, Joshua C. Chang 2,3, Richard C. Gerkin 4*, Shashaank Vattikuti 1*

1Mathematical Biology Section, LBM, NIDDK, National Institutes of Health2Epidemiology and Biostatistics Section, Rehabilitation Medicine, Clinical Center, National Institutes of Health 3 mederrata 4 School of Life Sciences, Arizona State University

*For correspondence contact carsonc@nih.gov, josh@mederrata.com, rgerkin@asu.edu, vattikutis@nih.gov

Summary: Estimation of infectiousness and fatality of the SARS-CoV-2 virus in the COVID-19 global pandemic is complicated by ascertainment bias resulting from incomplete and non-representative samples of infected individuals. We developed a strategy for overcoming this bias to obtain more plausible estimates of the true values of key epidemiological variables. We fit mechanistic Bayesian latent-variable SIR models to confirmed COVID-19 cases, deaths, and recoveries, for all regions (countries and US states) independently. Bayesian averaging over models, we find that the raw infection incidence rate underestimates the true rate by a factor, the case ascertainment ratio CARt that depends upon region and time. At the regional onset of COVID-19, the predicted global median was 13 infections unreported for each case confirmed (CARt = 0.07 C.I. (0.02, 0.4)). As the infection spread, the median CARt rose to 9 unreported cases for every one diagnosed as of April 15, 2020 (CARt = 0.1 C.I. (0.02, 0.5)). We also estimate that the median global initial reproduction number R0 is 3.3 (C.I (1.5, 8.3)) and the total infection fatality rate near the onset is 0.17% (C.I. (0.05%, 0.9%)). However the time-dependent reproduction number Rt and infection fatality rate as of April 15 were 1.2 (C.I. (0.6, 2.5)) and 0.8% (C.I. (0.2%,4%)), respectively. We find that there is great variability between country- and state-level values. Our estimates are consistent with recent serological estimates of cumulative infections for the state of New York, but inconsistent with claims that very large fractions of the population have already been infected in most other regions. For most regions, our estimates imply a great deal of uncertainty about the current state and trajectory of the epidemic.